

In this lecture

- Sound waves
- Speed of sound
- Acoustic Pressure
- Acoustic Impedance
- Decibel Scale
- Reflection of sound waves
- Doppler effect

ound	
Range	Frequency
Audible Range	15 - 20,000Hz
Child's hearing	15 - 40,000Hz
Male voice	100 - 1500Hz
Female voice	150 - 2500Hz
Middle C	262Hz
Concert A	440Hz
Bat sounds	50,000 - 200,000Hz
Medical US	2.5 - 40 MHz
Max sound freg.	600 MHz

Acoustic Impedance • Acoustic pressure increases with particle velocity, v, but also depends upon properties of the medium • Relationship between acoustic pressure and particle velocity is characterised by the acoustic impedance of the medium $Z = \frac{p}{r}$ • Units: kg m⁻² s⁻¹ or a ray

Acoustic Impedance

• Acoustic pressure is analogous to electrical resistance:

$$V = I R$$

• Z is a constant for a material (resistance, R) that inhibits velocity (current, I) for a given pressure (voltage, V)

Acoustic Impedance

- Acoustic impedance is also related to the elasticity of the medium
- Stiffer bonds between molecules increases the pressure exerted by a molecule moving with velocity v.
- A springy material will have high molecular motion and absorb sound energy in the bonds
 - less energy will be transferred between molecules

Acoustic Impedance

• Wave propagation speed depends upon elasticity of medium and density:

$$Z =
ho c = \sqrt{B
ho}$$

Acoustic Power

- Sound energy is measured in Joules (J)
- Sound Power in Js⁻¹ or Watts (W)
- Again analogous to electricity

$$P = pv = v^2 Z$$

Acoustic Intensity

- Acoustic Intensity is measured in W $\rm cm^{-2}$
- Instantaneous power passing through a unit area of material
- Typical intensities used for ultrasound imaging are between 0.01 - 1 mW mm⁻²

Recap Logarithms • If $log_a(b) = c$ • Then c is the power to which you have to raise a, in order to get b. • Put more simply, $a^c = b$

Decibel Scale

- Comparative sound intensity is measured using decibels
- Logarithmic unit used to describe a ratio

$$dB = 10\log\left(\frac{I_2}{I_1}\right)$$

•Describe very big ratios using modest numbers

Example

• For an incident ultrasound beam of intensity of 1 Wcm⁻² is reflected with an intensity of 0.1mW cm⁻². Express this power loss in dB.

$$dB = 10\log\left(\frac{I_2}{I_1}\right)$$
$$= 10\log\left(\frac{0.0001}{1}\right)$$
$$= 10 \times -4$$
$$= -40dB$$

Reflection & Transmission of Sound Waves • A pulse of sound incident on an interface between media with different mechanical properties can undergo

 Transmission or Reflection

two processes

Reflection & Transmission of Sound Waves

 Reflection and transmission of sound waves forms the basis of ultrasound imaging

Example

• If a transducer and tissue have acoustic impedances of 30×10⁶ & 1.5×10⁶ kgm⁻²s⁻¹ respectively, what acoustic impedance should a matching medium have to minimise reflection?

Doppler Effect

Example

 A police car travelling at 60mph has a siren emitting sound with frequency (f_s) 300Hz. What frequency would a stationary observer measure if the police car was travelling away from her?

Summary

- Sound waves
- Speed of sound
- Acoustic Pressure
- Acoustic Impedance
- Reflection of sound waves
- Decibel Scale
- Doppler effect

Practice Questions

- A sound wave propagates at 300ms⁻¹ through a medium with an acoustic pressure of 10 pa. Calculate the acoustic impedance of the medium
- A sound wave propagates at 4080ms⁻¹ through a medium with a density of 1700 kgm⁻³. Calculate the acoustic impedance of the medium